
Native Cloud Defenses vs
Kubernetes Attacks
Extended analysis of cloud native security tools

against Kubernetes attack simulations

Native Cloud Defenses vs Kubernetes Attacks | 2

Table of Contents

01 Introduction 3

02 K8 Clusters Under Attack 4

03 The Kubernetes Test Environment 5

04 Analysis of Results: Low Detection Rates 5

05 Kubernetes Research Findings 8

06 Cymulate Recommendations 9

07 Conclusion: Additional Tooling Required 10

08 Appendix: Kubernetes Testing Protocol 11

��������
	���������������	���������������� � �

���
�"�����!�

JQF;M3;O;H�C@>�49LD<9�8C9�69�5@L8D�>8@:6@06�5D0�69E/D=.:B�

@EE/.L@8.D:>�.:�8C9�L/D-6�@>�D0B@:.I@8.D:>�D5�@//�>.I9>�,50D<�><@//�8D�

<96.-<7>.I96�4->.:9>>9>�@:6�/@0B9�9:890E0.>9>�@:6�<-/8.7:@8.D:@/>+�

0-:�4->.:9>>7L0.8.L@/�@EE/.L@8.D:>�D:�*-490:989>�L/->890>�CD>896�4=�

/9@6.:B�L/D-6�>90G.L9>�E0DG.690>�/.K9�N<@ID:�P94�290G.L9>�)NP2?1�

(.L0D>D58�NI-091�@:6�'DDB/9�&/D-6�%/@85D0<�)'&%?$�

X�VUTU"R

}C9�s>8@:6@06w�>-.89�D5�:@8.G9�>9L-0.8=�8DD/>�D559096�4=�8C9>9�/9@6.:B�

L/D-6�E0DG.690>�.>�>.<E/=�:D8�>-55.L.9:8�8D�6989L8�<@:=�D5�8C9�/@89>8�

L=490@88@LK>�8@0B98.:B�=D-0�*-490:989>�)*\?�L/->890>$�{

PC./9�@:=�L/D-674@>96�*-490:989>�6959:>9�>CD-/6�>8@08�Y.8C�8C9�

@G@./@4/9�:@8.G9�>9L-0.8=�8DD/>�50D<�8C9>9�L/D-6�E0DG.690>1�.8�L@::D8�

9:6�8C909$�i->.:9>>9>�8C@8�E/@L9�8C9.0�80->8�>D/9/=�.:�8C9>9�8DD/>�5D0�

<D:.8D0.:B�@:6�@/908.:B�ED89:8.@/�@88@LK>�D:�8C9.0�*-490:989>�

LD:8@.:90>�@09�E/@L.:B�8C9<>9/G9>�@8�0.>K�D5�@�409@LC$�}C9>9�8DD/>�

@/D:9�5@./96�8D�6989L8�<D09�8C@:�C@/5�D5�8C9�*-490:989>7>E9L.5.L�

8C09@8�@L8.G.8.9>�D-0�8C09@8�09>9@0LC�89@<�LD:6-L896$R

���������U��U~��R

}C9�´»Q±©O;¨®°M;©O¨�;H;©M�°¨¯MªQ¤�69L.696�8D�D:L9�@B@.:�E-8�

8C9�>8@:6@06�>9L-0.8=�8DD/>�D5�8C9�8C099�<@ºD0�L/D-6�E0DG.690>�8D�8C9�

89>8�4=�0-::.:B�@�>90.9>�D5�*-490:989>�@88@LK�>.<-/@8.D:>�8D�

69890<.:9�.5�8C9.0�:@8.G9�>9L-0.8=�8DD/>�5D0�<D:.8D0.:B�@:6�@/908.:B�

8C9>9�@88@LK>�LD-/6�E09G9:8�@:6�6989L8�8C9�8C09@8�@L8.G.8=$�}C.>�8.<91�

Y9�9�E@:696�8C9�89>8�>L9:@0.D>�50D<����8D����5D0�@�<D09�

LD<E09C9:>.G9�89>8�D5�8C9�:@8.G9�>9L-0.8=�8DD/>${

N:61�YC./9�8C9�:@8.G9�8DD/>�6D�C@G9�G@/-9�.:�9:C@:L.:B�L=490>9L-0.8=�

09>./.9:L91�8C9=�9�C.4.8�>.B:.5.L@:8�B@E>�.:�6989L8.D:�@:6�@/908.:B�D:�

*-490:989>7>E9L.5.L�8C09@8�@L8.G.8=�4=�8C9<>9/G9>${

}C9�09>-/8>�D5�D-0�/@89>8�409@LC�@:6�@88@LK�>.<-/@8.D:�89>8>�C.BC/.BC8�

@�G@0=.:B�@:6�LD:L90:.:B�/DY�69B099�D5�955.L@L=�YC9:�->96�@>�8C9�

>D/9�<D:.8D0.:B�@:6�@/908.:B�>=>89<�5D0�*-490:989>�9:G.0D:<9:8>$R

ÓÖÎßÛÎÞÝ×ÕÝãàÛÎÑ�8D�5.:6�D-8�8C9�09>-/8>�D5�D-0�89>8>�@:6�YC@8�>89E>�

=D-�L@:�8@K9�8D�E09G9:8�8C.>�50D<�C@EE9:.:B�.:�=D-0�*-490:989>�

9:G.0D:<9:8$

öúç÷üûùéðòøôùóñòü÷ôûñùçòòðïùúðòíûùúñûù

ùçòùôûçûéçùìúíîùúççúéêïù

òíùëøï÷íûïïèéñ÷ç÷éúðùúóóð÷éúç÷òíïùúíôù

æòñêðòúôïñøíí÷íõù÷íùåøëûñíûçûïù

éðøïçûñïä

not sufficient

öúç÷üûùçòòðïùúðòíûùûxh÷ë÷çùï÷õí÷f÷éúíçù

õúóïùæ÷çhù ù

fòñùåøëûñíûçûïèïóûé÷f÷éùçhñûúçùúéç÷ü÷çîä

less than 50% detection rate

Thûùfú÷ðøñûùòfùçhûïûùíúç÷üûùçòòðïùçòù

ôûçûéçùçhñûúçùúéç÷ü÷çîù÷íùå8ùéðøïçûñïù

ùëîùúù

çhñûúçùúéçòñù÷fùøïûôùúïùçhûùïòðûùôûfûíïûù

ìûéhúí÷ïìùfòñùåøëûñíûçûïä

could leave your business KO'd

AíôùúçùCîìøðúçû,ùæûùëûð÷ûüû

��a��!~� ���OK

��������
	���������������	���������������� � �

��
*$#(!% '�� #&)���#�''��"

SBW�DRIL�JWR7�BRI�IWWP�R�HRGW�EA�RLLR<=I�LR7CWL:PC�O9@W7PWLWI�<89ILW7I?�:P<896:PC�7E8WK@RIW6�R<<WII�<EPL7E8�54;32Q�

@R<=6EE7�RLLR<=I?�LBW�:PAR1E9I�><R78WLWW8�RP6�30>�:PA7RIL79<L97W�RLLR<=I?�RP6�RLLR<=I�:PGE8G:PC�/W7E�RP6�.EPW7E�<7JDLE�

1:PW7I-U

SBWIW�RLLR<=I�R7W�<E1D8WN�EDW7RL:EPI�LBRL�B:CB8:CBL�LBW�IEDB:IL:<RLW6�LR<L:<I�9IW6�@J�LB7WRL�R<LE7I�LR7CWL:PC�<8E96�

WPG:7EP1WPLI�LE�ILWR8�<7W6WPL:R8I�RP6�WND8E:L�<E11EP�<8E96�1:I<EPA:C97RL:EPI�8:=W�EGW7KD7EG:I:EPW6�R<<WII�7:CBLI�RP6�

DW71:II:EPI-U

SBW�7E8WK@RIW6�R<<WII�<EPL7E8�@R<=6EE7�RLLR<=I�E<<977W6�A7E1�R�1:I<EPA:C97W6�3,F�IW7GW7�LBRL�R88EHW6�9PR9LBWPL:<RLW6�

7W+9WILI�A7E1�RPEPJ1E9I�9IW7I�LE�CWL�:PAE71RL:EP�R@E9L�LBW�OM�<89ILW7?�HB:<B�LBWJ�9IW6�LE�WND8E:L�LBW�WPG:7EP1WPL�A97LBW7�

RP6�CR:P�DW7I:ILWP<W-U

SBWIW�RLLR<=�<R1DR:CPI�9P6W7I<E7W�LBW�<7:L:<R8�:1DE7LRP<W�EA�IW<97:PC�O9@W7PWLWI�<89ILW7I�RCR:PIL�<E11EP�

1:I<EPA:C97RL:EPI�RP6�B:CB8:CBL�LBW�PWW6�AE7�EPCE:PC�G:C:8RP<W?�7WC98R7�IW<97:LJ�GR8:6RL:EP?�RP6�LBW�RDD8:<RL:EP�EA�IW<97:LJ�

@WIL�D7R<L:<WI�:P�<8E96�WPG:7EP1WPLI-�T

i���#'e# ��%��#*%[��)�'� #�!% '�� #�Y�g) '#'X�#!�'� '#'X���'#��'e�#'��'g�

~e!�x[� ��#���� #�e)'�e!#

m~l�(j#[��"�ee�#�''��" T

 .:I<EPA:C97W6�OM�3,F�IW7GW7�

 388EHI�9PR9LBWPL:<RLW6�
7W+9WILI�A7E1�RPEPJ1E9I�9IW7I�

 �R:P�:PAE71RL:EP�R@E9L�OM�
<89ILW7�

 �IW6�LE�WND8E:L�LBW�WPG:7EP1WPL�
A97LBW7�RP6�CR:P�DW7I:ILWP<WT

³���!�'��!#�)�#�«³#

g)£�� '�%�'%��#�''��" T

 ÓND8E:L�G98PW7R@8W�D9@8:<KAR<:PC�
IW7G:<W�H:LB:P�R�OM�<89ILW7�

 /WD8EJ�R�<7JDLE�1:PW7�RI�R�
6W<EJ�LE�6:IL7R<L�A7E1�D7:1R7J�
E@´W<L:GWI�

 ÓILR@8:IB�DW7I:ILWP<W?�WNA:8L7RLW�
6RLR?�ILWR8�<7W6WPL:R8IT

Ý��e#�)�#âe)��e#��Ú×'e#

äg)��#�''��" T

 LE<RLWI�OM�<89ILW7I�H:LB�
RPEPJ1E9I�R<<WII�WPR@8W6�

 Ó8WGRLW�D7:G:8WCWI�9I:PC�
/RW1EP>WLI�RP6�BEIL�7EEL�
1E9PL�

 /WD8EJ�<7JDLE�1:P:PC�EDW7RL:EPI�
<EPI91:PC�<8E96�7WIE97<WIT

��������
	���������������	���������������� � �

��
 %)&#�")!$)�)�&)��&�$�(!�$')$�

NSQ�K9H;?MJQ�NS@QMJ�=Q:QM@8S�G@7;6�Q:JMF?<:SQI�B;FQ@AQJQ:�

QA5<@7AHQAJ:�<A�QM8S�7E�JSQ�JS@QQ�?QMI<AR�8?7;I�6@75<IQ@:�4�

3HM27A�0QF�DQ@5<8Q:�/30DLC�.<8@7:7EJ�32;@QC�MAI�G77R?Q�K?7;I�

-?MJE7@H�/GK-L,�1M8S�8?7;I�6@75<IQ@�SMI�<J:�AMJ<5Q�IQEQA:Q�

HQ8SMA<:H:�QAMF?QI>O

+ 32;@Q�K?7;I�*QEQAIQ@O

+ 30D�G;M@I*;J9O

+ GK-�K7HHMAI�KQAJQ@

kmcnji`\ej`\dgjha^b]jmgji`nji`cn\ij

\liZ[ZiVjinWinXj_\WjemijXninlinXjfVj

i`nje\iZ[njldmYXjXngneWnjUnl`\eZWUWT

NSQ�87AE<R;@MJ<7A:�E7@�QM8S�:Q8;@<J9�:7?;J<7A�}Q@Q�5Q@<E<QI�F9�JS<@I�6M@J<Q:�7;J:<IQ�7E�K9H;?MJQ>�Q<JSQ@�F9�M;JS7@<2QI�

6M@JAQ@:C�MEE<?<MJQI�MAI�8Q@J<E<QI�F9�JSQ�@Q:6Q8J<5Q�8?7;I�6@75<IQ@u�7@�I<@Q8J?9�F9�JSQ�:;667@J�JQMH:�7E�JSQ�8?7;I�6@75<IQ@�<A�

t;Q:J<7A,�

K9H;?MJQ�JSQA�;:QI�7;@��@QM8S�{�3JJM8��D<H;?MJ<7A�:7?;J<7A�J7�87AI;8J�qp�M;J7HMJQI�MJJM8�:�JM@RQJ<AR�JSQ�B;FQ@AQJQ:�

87AJM<AQ@:�<A�QM8S�8?7;I�QA5<@7AHQAJ,��

NSQ�@Q:;?J:�FQ?7}�}Q@Q�F7JS�<??;H<AMJ<AR�MAI�87A8Q@A<AR�E7@�MA9�7@RMA<2MJ<7A�;:<AR�M�8?7;I�S7:JQI�B;FQ@AQJQ:�QA5<@7AHQAJ�

MAI�@Q?9<AR�:7?Q?9�7A�JSQ�8?7;I�AMJ<5Q�:Q8;@<J9�J77?:�E7@�6@7JQ8J<7A,

��
�$«£��(�&� &¡)��£���&¦��&¤)�)ª�(�$&¡«�)�

NSQ�8SM@J�FQ?7}�:;HHM@<2Q:�JSQ�IQJQ8J<7A�@MJQ:�7E�JSQ�:JMAIM@I�AMJ<5Q�8?7;I�:Q8;@<J9�J77?:�;:QI�J7�IQEQAI�B;FQ@AQJQ:�

8?;:JQ@:�E7@�QM8S�8?7;I�:Q@5<8Q�6@75<IQ@,�

¿»¾µÀ½º¶°º®½´

¹º³À¯²¬®¶¸±º·¾½º¼

ÍÆ¾¯º¶µ¬¾¼¶ÈºÊº³¼º¯

*QJQ8J<7A�=MJQ

ÍØ¹¶Õ¾À¯¼¶È¾½¿

*QJQ8J<7A�=MJQ

Õà¶¬»»À³¼¶º³½º¯

*QJQ8J<7A�=MJQ

Íêº¯Àæº

íì

ïì

ïï

ð

ïíóòò

ööõ

òøõ

íûõ

ûòõ
3??�K?7;I�-@75<IQ@:�K7HF<AQI

��������
	���������������	���������������� � �

���
" !���!��!��

7W�!]��Z^�!�L!�L��YQEM L��a��U!���9O�JOTUFQ!�V�!]�� A�EQFF���!��!M Y�EQ!��W E�QFF�

!]E����F U��bE AM��EL�L� E���9�!?��Y�Z>=�QY��GG=�LU���LLWUF���W�YL�V�?M!]�QY1

<dS:<_S1@N;:S1;81C6@51432/�.]ML�T�QYL�!]Q!�B;:S15-<I1-<H81,+*2D� W�!]��LMTUFQ!M Y�

Q!!Q�)�L��YQEM L��QEEM��� U!�9O�JOTUFQ!�V�?�E��I;51(S5SN5S(�9O�!]��YQ!MA��L��UEM!O�

! FL�Q�E LL�QFF��F U��bE AM��EL�� T9MY���'&%UE�V�&\RV�$J#K/

�e�
krt}sltlutlw

�piz~y}qlxion|

ml{ljithv

7W�!]��Z^�!�L!L�� Y�U�!��V�¬��E���MA���Q�JOTUFQ!��L�A�EM!O�L� E�� W��§³®º¹�º

��§�°V�QY��!]��QA�EQ���Q�E LL�QFF��F U��bE AM��EL�L��UEM!O�! FL���!��!��� YFO�

]QFW�'��=K� W�!] L��]M�]�E�bEM EM!O�Q!!Q�)�LMTUFQ!M YLV�]M�]FM�]!MY��!]�ME�b !�Y!MQF�

�ab LUE��! �Q�E�QF�Q!!Q�)/�.]�� U!� T�� W�QFF�Z^�!�L!L�� Y�U�!���MY�M�Q!�L�!]Q!�!]��

YQ!MA��! FL�W E��Q�]� W�!]��!]E���TQMY��F U��A�Y� EL�¸��º�¹�º¶����º ¸�¸���� W�

T��!MY��!]��Lb��MWM��Y���L� W�LU���LLWUFFO���W�Y�MY���F U��] L!����U9�EY�!�L�

�FUL!�EL� Y�!]�ME� ?Y/�

ËM�?�!]��� TbF�!��FML!� W�Z^�Q!!Q�)�L��YQEM L�MY�!]���U9�EY�!�L�.�L!MY��#E ! � FL�&bb�Y�Ma�Q!�!]���Y�� W�!]ML�� �UT�Y!/

æãèëìçëäëîåíëîäåéàëçßìêÞîåâîêçÜåíÛìëßäåÚàäÞìåíßàäêàîåßçÝåíëàÛçêáãëîå

JF U���Q!Q�9E�Q�]�L�QE�� W!�Y�!]��E�LUF!� W�TML� YWM�UE���L�!!MY�L�MY�!]���F U��MYWEQL!EU�!UE��QY���U9�EY�!�L��YAME YT�Y!/�

.]E�Q!�Q�! EL�UL��AQEM UL�!Q�!M�L�QY��!��]YM	U�L�!]Q!�!Q)��Q�AQY!Q��� W�!]�L��TML� YWM�UEQ!M YL�! ��abF M!��U9�EY�!�L�

�FUL!�EL/�

.]��JOTUFQ!��.]E�Q!���L�QE�]�.�QT�]QL��L!Q9FML]���Q�AQY����!�L!�L��YQEM L�MY�!]��JOTUFQ!��bFQ!W ET�!]Q!�QE���QE�WUFFO�

�EQW!���! �LMTUFQ!��!]��!Q�!M�L�QY��!��]YM	U�L�UL���9O�!]E�Q!�Q�! EL�! ��abF M!�� TT Y�TML� YWM�UEQ!M YL�MY�Q��U9�EY�!�L�

�YAME YT�Y!/�

.]��E�L�QE�]�!�QT��E�Q!���Z^�!�L!��QL�L�ULMY��¬���MWW�E�Y!�Q!!Q�)�!��]YM	U�L�!]Q!�� A�E�!]��L�A�Y�!Q�!M�L�WE T�MYM!MQF�Q���LL�

! ��ML� A�EO�Q�E LL�!]�������1 ���)��TQ!EMa/�.]E�Q!�Q�! EL�� TT YFO�UL��!]�L��!Q�!M�L�QY��!��]YM	U�L�! ��QMY�MYM!MQF�

Q���LLV��a��U!��bQOF Q�LV��L!Q9FML]�b�ELML!�Y��V��L�QFQ!��bEMAMF���LV��AQ�����W�YL�LV�Q���LL��E���Y!MQFLV�QY���ML� A�E�

E�L UE��L�MY�Q��U9�EY�!�L��YAME YT�Y!/�

.]��Q9MFM!O�! ���!��!�!]�L��TQFM�M UL�9�]QAM EL�ML��EM!M�QF�! �L! bbMY��Q��F U���Q!Q�9E�Q�]�9�W E��!]��!]E�Q!�Q�! EL�E�Q�]�!]��

WMYQF�L!Q��L� W�FQ!�EQF�T A�T�Y!V�� TTQY��QY��� Y!E FV��aWMF!EQ!M YV�QY��WMYQF�MTbQ�!/�

��������
	���������������	���������������� � �

$!&)*%)"),#+),"#'�)%�*(�,# ,(%�#+�*)�"#��"�*#+��"(�,#�%�#+)��%(�!),

8%("(�6#���),,4

GKKKJI

J�GAD@?B>FAI

J�GA<:�;DA?=9BC4

]V[XZYRWPQOXY\WUN\YTMWL[[XY\NRYZT4

n i?C?jgCF<�iDDA<<�e9=?:Ah4

wr)�!"(�%

GKKK�I

��GAD@?B>FA<I

JJ�GA<:�;DA?=9BC<4

�ZTRNYT��WL��YTY�R�NRYZTW�Z��NT�

n ;:C¶�i¶:·=Bªj�®¶»9=h¨

n ¦9A=:A�CD¥A9�¬?�CD¥A©

n ¢¡ADF:A�¦Cgg=?h±

n ¢¡¶ªCB:��C@F´

n GA9gB?=:A��9CDA<<A±

n B»B:=ª�¦F99A?Dj��B?B?¹

n ;F<¶BDBCF<��BªA�C�?ªC=h

Ì�[XZÊW�ZTRNYT��

n ¦9A=:A�¦C?:=B?A9�B?�

ÖFÕA·;j<:Ag�

�=gA<¶=DA

óTR��ðP�Z\���W�Z��QTY\NRYZT

n HC<:�¬�¦��9BvBªA»¨

n HC<:��¬��9BvBªA»¨

n ¬?<ADF9A�¦=¶=ÕBªB:BA<

P)*,(,")%�)

GKKK�I

J�GAD@?B>FAI

J�GA<:�;DA?=9BC4

���NR�WL\\ZQTR4

n ¢¡¶ªCB:�®<A9=hh4

P*(v(6)�)#w,��6�"(�%4

GKKK4I

4�GAD@?B>FA<I

8�GA<:�;DA?=9BC<4

LOQ��W]X�vNRYZTW�ZTR�ZXW

M�\hNTY��

n i?Cg=ªCF<�RCªA�BB?hB?»�

BA@=vBC9a

n ¦9A=:A�HB»@��9BvBªA»A�RCªA4

]�\N[�WRZWHZ�RW���NR�W

LYTQVWNN���[N\�4

n ¦9A=:A��9BvBªA»Ah�¦C?:=B?A9a

n HC<:��=:@��CF?:a

n W9B:A=ÕªA�HC<:��=:@��CF?:a

n ¦9A=:A�LB?F¡��=gA<¶=DA

]V[XZYRNRYZTWfZ�W

P�YvYX�M�W]�\NXNRYZT

n RCªA�BB?hB?»:�¦ªF<:A9�-�

ihgB?�RCªA4

VNXY�WL\\ZQTR�4

n ihgB?�iDDA<<�

Af=Fª:�;A9vBDA�

iDDCF?:

D)f)%,)#wv�,(�%

GKKK5I

J�GAD@?B>FAI

��GA<:�;DA?=9BC<4

óT�Y\NRZ�WR��ZvNXW(�X�N�W

�Z��NT�WHY�RZ�Ê)4

n ¦ªA=9�HB<:C9j��BªA7

n AªA:A�¢vA?:<

C*)�)%"(�6#���),,

GKKK6I

��GAD@?B>FA<I

��GA<:�;DA?=9BC<4

SR�NXWL[[XY\NRYZTWL\\���WTZk�T

n i¶¶�¦9AhA?:B=ª<�¬?�¦C?fB»F9=:BC?�

�BªA<4

UT��\Q���W�����TRYNX�

n iDDA<<�GC�ÖFÕAªA:4ÖFÕADC?fB»��BªAa

n LB<:�;AD9A:<4

D(,��v)*y

GKKK7I

��GAD@?B>FA<I

��GA<:�;DA?=9BC<4

�XZQ�WS��vY\�WÌY�\Zv��Ê

n ;FDDA<<fFª�i?C?jgCF<�

iDDA<<4

�ZTRNYT��W&W

R��ZQ�\�WÌY�\Zv��Ê

n i?C?jgCF<�iDDA<<4GC�

ÖFÕAªA:�;A9vBDA

N�RwZ�kWS��vY\�W

ÌY�\Zv��Ê4

n HC<:��A:�C9¥�iDDA<<4

��������
	���������������	���������������� � �

��
"�$&*#&�&)! &)&(*'�!�%#�%#�)

MTK@�CR@RJCIT�JQJDA=R@�<TR�J9KDK<A�F:�QJ<K6R�IDFL?�@RILCK<A�<FFD@�;>=LCR�5DFL?�4R:RQ?RC8�>37�2LJC?4L<A8�JQ?�251�

5F00JQ?�5RQ<RC/�<F�?R<RI<�IF00FQ�J<<JIH�<RITQK.LR@�LQ?RC�JQ�J@@L0R?�9CRJIT�0KQ?@R<-�MTR�<R@<@�:FIL@�FQ�<TR�

?R<RI<KFQ�F:�<TR@R�J<<JIH@�JQ?�JDRC<KQS�@RILCK<A�FERCJ<KFQ@�<RJ0@�<F�<TR�:JI<�<TJ<�@<RJD<TA�<TCRJ<�JI<FC@�JCR�FERCJ<KQS�

KQ@K?R�<TRKC�,L9RCQR<R@�RQ6KCFQ0RQ<-O

GRDF+�K@�J�@L00JCA�F:�<TR�HRA�:KQ?KQS@�K?RQ<K:KR?�9A�<TK@�,L9RCQR<R@�CR@RJCITBN

]''&))! %���)!(#�!V&*b%))%W#)

t6RCnECF6K@KFQR?�JIIR@@�CKST<@�JQ?�ERC0K@@KFQ@�IFQ<KQLR�<F�9R�FQR�F:�<TR�DRJ?KQS�IJL@R@�F:�IDFL?�?J<J�9CRJITR@�JQ?�

:JKDR?�?R<RI<KFQ@�+K<TKQ�<TK@�,L9RCQR<R@�RgERCK0RQ<-N

�(�)!%#!�&�&'�%W#!�(�($%�%�%&)

MTR�:KQ?KQS@�LQ?RC@IFCR�J�@KSQK:KIJQ<�SJE�KQ�<TR�?R<RI<KFQ�IJEJ9KDK<KR@�F:�QJ<K6R�IDFL?�?R:RQ@R�0RITJQK@0@�JSJKQ@<�

,L9RCQR<R@�J<<JIH�6RI<FC@-��FCR�<TJQ�TJD:�F:�<TR�J<<JIH@�+RQ<�LQ?R<RI<R?8�EF<RQ<KJDDA�DRJ6KQS�IDFL?�RQ6KCFQ0RQ<@�

@L@IRE<K9DR�<F�@R.LRQ<KJD�J<<JIH�J<<R0E<@-N

�Wb��&¸%�´!W³!"�$&*#&�&)

,L9RCQR<R@8�+TKDR�EF+RC:LD8�K@�KQTRCRQ<DA�IF0EDRg-�Ï<@�?AQJ0KI�QJ<LCR8�QJ<K6R�RDJ@<KIK<A8�JQ?�<TR�CJEK?�CJ<R�F:�9F<T�

IF?R�JQ?�EDJ<:FC0�ITJQSR@�0RJQ�<TJ<�<CJ?K<KFQJD�?R:RQ@R�0RITJQK@0@�0KST<�QF<�9R�@L::KIKRQ<-�MTK@�RgERCK0RQ<�

TKSTDKST<@�<TR�K0EFC<JQIR�F:�@ERIKJDK=R?�<FFD@�FC�J??K<KFQJD�DJARC@�F:�@RILCK<A8�R@ERIKJDDA�:FC�,L9RCQR<R@�?REDFA0RQ<@-N

��W$(�!ä¸��W%�)

Ï:�@LIT�J�@0JDD�:CJI<KFQ�F:�J<<JIH@�IJQ�9R�?R<RI<R?�KQ�J�IFQ<CFDDR?�RQ6KCFQ0RQ<�+K<T�6RCK:KR?�IFQ:KSLCJ<KFQ@8�K<�CJK@R@�J�

@KSQK:KIJQ<�IFQIRCQ�J9FL<�<TR�9CFJ?RC�@<J<R�F:�,L9RCQR<R@�?REDFA0RQ<@�+FCD?+K?R-�Ï:�<TR@R�:KQ?KQS@�JCR�KQ?KIJ<K6R�F:�

<TR�SDF9JD�@K<LJ<KFQ8�IFLQ<DR@@�,L9RCQR<R@�IDL@<RC@�IFLD?�9R�J<�CK@H�9F<T�FQnECR0K@R�JQ?�KQ�<TR�IDFL?�K:�@ERIKJDK=R?�

?R:RQ@K6R�<FFD@�JCR�QF<�K0EDR0RQ<R?�<F�@<CRQS<TRQ�,L9RCQR<R@�@RILCK<A-N

�(�)&!ò&#)&!W³!ò&'�*%�´

tCSJQK=J<KFQ@�0KST<�TJ6R�J�:JD@R�@RQ@R�F:�@RILCK<A8�9RDKR6KQS�<TJ<�QJ<K6R�IDFL?�?R:RQ@R�0RITJQK@0@�ECF6K?R�

IF0ECRTRQ@K6R�ECF<RI<KFQ-�5FQ<KQLFL@�0FQK<FCKQS8�ERQR<CJ<KFQ�<R@<KQS8�JQ?�<TCRJ<�0F?RDKQS�@ERIK:KI�<F�,L9RCQR<R@�JCR�

ICLIKJD-�7ERIKJDK=R?�?R<RI<KFQ�JQ?�JDRC<KQS�@A@<R0@�JCR�QRIR@@JCA�<F�RQ@LCR�<TJ<�<TCRJ<�JI<K6K<A�K@�K?RQ<K:KR?8�JQ?�

JEECFECKJ<R�ERC@FQQRD�JCR�0J?R�J+JCR�–�R6RQ�KQ�IJ@R@�+TRCR�@F0R�F:�<TR�<TCRJ<�JI<K6K<A�K@�9DFIHR?�FC�F<TRC+K@R�

@<FEER?-N

T�&!�(#�&*)!W³!(!ò%�&#�!T�*&(�

MTR�J9@RQIR�F:�?R<RI<KFQ�?FR@�QF<�K0EDA�<TR�J9@RQIR�F:�JQ�J<<JIH-�7KDRQ<�9CRJITR@8�+TRCR�<TR�6KI<K0�CR0JKQ@�

LQJ+JCR�F:�JQ�FQSFKQS�IF0ECF0K@R8�IJQ�9R�<TR�0F@<�?R6J@<J<KQS-�t6RC�<K0R8�LQ?R<RI<R?�0JDKIKFL@�JI<FC@�IJQ�SJKQ�

?RRERC�JIIR@@8�Rg:KD<CJ<R�@RQ@K<K6R�?J<J8�FC�DJA�?FC0JQ<�FQDA�<F�JI<K6J<R�J<�J�@<CJ<RSKIJDDA�FEEFC<LQR�0F0RQ<-�E6RQ�

+TRQ�DFFHKQS�J<�<TR�CR@LD<@�F:�<TK@�CFLQ?�F:�<R@<KQS8�JI<KFQ@�<TJ<�IFLD?�TJ6R�JDRC<R?�FCSJQK=J<KFQ@�<F�<JCSR<KQS�JQ?�

ECFSCR@@K6R�KQ:KD<CJ<KFQ�J<<R0E<@�+RCR�QF<�?R<RI<R?�–�KQ:FC0J<KFQ�<TJ<�IFLD?�TJ6R�JDDF+R?�JQ�FCSJQK=J<KFQ�<F�<JHR�

ECFJI<K6R�@<RE@�<F�TRJ?�F::�JQ�J<<JIHRC-N

Native Cloud Defenses vs Kubernetes Attacks | 9

06
Cymulate Recommendations

The number one recommendation from Cymulate:

Third Party Security Tools Are Needed

Organizations need to supplement the native defense mechanisms of all three cloud providers with additional third-

party security tools for better detection and prevention of their Kubernetes environments.

In addition, Cymulate also recommends:

Privilege & Access Rights

Manage and maintain permissions and access rights using the principle of least privilege.

Continuous Training & Awareness

Keeping teams updated about the latest attack vectors and defense mechanisms is critical.

Regular Audits

Beyond initial setup verification, periodic audits, and red team exercises can help identify potential blind spots within

the organization’s security posture. This is especially critical for Kubernetes environments, where frequent code

updates and the elastic nature of the platform itself ensure that the attack surface will change on an ongoing basis.

Multi-Layered Security

Employ a multi-layered approach that includes network segmentation, role-based access controls, and runtime

security. Invest in advanced monitoring tools and techniques to identify unusual patterns, signaling potential

breaches.

Ongoing Testing

The utilization of platforms like Cymulate can allow organizations to perform regular automated testing on a

continuous basis. This permits the organization to safely simulate threat activity and observe the results, confirming

where controls are acting as expected and where changes are required to defend the organization.

��������
	���������������	���������������� � ��

��
.-*')%"!-*+(�,,!$!-*&)(�--)!*�(� #%!� ,

M?I=G�E?G�CHF:>�A=:J<�;>:9I<G>8�:66G>�>:5J8E�HB<�G9:=9IB@�8GAJ>IE7�8:=JEI:B84�E?G�6H8ED;HAG<�HB<�IBE>IAHEG�3:>=<�:6�

2J5G>BGEG8�>G0JI>G8�H�C:>G�6=G1I5=G�HB<�<G<IAHEG<�H;;>:HA?/�K

k?G�6IB<IB@8�:6�E?I8�G1;G>ICGBE�8?:3�E?G�BGG<�6:>�H�AH==�E:�HAEI:B�6>:C�:>@HBIWHEI:B84�

A=:J<�;>:9I<G>84�HB<�E?G�8GAJ>IE7�A:CCJBIE7�HE�=H>@G/�MIE?�2J5G>BGEG8�5GA:CIB@�H�

CHIB8EH7�IB�C:<G>B�IB6>H8E>JAEJ>G4�GB8J>IB@�IE8�8GAJ>IE7�I8�B:E�FJ8E�HB�:>@HBIWHEI:BH=�

A:BAG>B�D�IE�I8�H�@=:5H=�IC;G>HEI9G/l

k?G�2J5G>BGEG8DJ8IB@�3:>=<�CJ8E�>GA:@BIWG�HB<�HAE�:B�E?G8G�9J=BG>H5I=IEIG8�5G6:>G�

E?G7�CHBI6G8E�IBE:�=H>@G>4�C:>G�AHEH8E>:;?IA�G9GBE8/�O8�8J;;=7DA?HIB�HEEHA]8�

A:BEIBJG�E:�@HIB�;:;J=H>IE7�HB<�6>G0JGBA74�:>@HBIWHEI:B8�8?:J=<�H=8:�CHB<HEG�E?HE�

9GB<:>8�HB<�8J;;=IG>8�>GCHIB�H3H>G�:6�E?G8G�A:BAG>B8�H>:JB<�2J5G>BGEG8/

�vr}��|��~�x�

{}zxw|x�xu��v}u�xwu�

wx�}~wx�u~y~v�w��rrv~|��

�u�r|�swxy~ux�

�xsvrtyx|�u��r�u��t�

swr�x��x�q

§B8J>IB@�2J5G>BGEG8�8GAJ>IE7�I84�HB<�3I==�>GCHIB4�:6�]G7�IC;:>EHBAG�E:�H==�:>@HBIWHEI:B84�>G@H><=G88�:6�?:3�=IEE=G�:>�?:3�CJA?�

E?G7�J8G�E?G�;=HE6:>C�E?GC8G=9G8�HB<�>G@H><=G88�:6�E?G�A=:J<�;>:9I<G>�8��E?G7�A?::8G�E:�?:8E�E?G�;=HE6:>C�:B/K

Appendix
 Kubernetes Testing Protocol

12

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

The following testing operations were executed across the Mitre Att&ck chain against the
Kubernetes environments configured for each cloud provider: Azure, AWS, and GCP.

Initial Access (TA0001)

Anonymous Access Granted

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Detected Not Detected

•	 Category: Privilege Escalation

•	 Attack Technique: Exploit Public Facing Application

•	 Type of Attack: The attack involves creating a ClusterRole with read-only permissions and binding it to the
system:anonymous user. This allows unauthenticated users to access sensitive cluster information, which can
facilitate further attacks or reconnaissance activities. The consequences include unauthorized data access,
potential information leakage, and an increased risk of subsequent attacks.

•	 Use Case Flow:

•	 Initialization. The attack initializes by loading the Kubernetes configuration and creating an API client for
RBAC operations.

•	 ClusterRole Creation. The attack creates a read-only ClusterRole with permissions to get, list, and watch
various resources such as pods, services, deployments, jobs, and more.

•	 ClusterRoleBinding Creation. The attack binds the newly created ClusterRole to the system:anonymous
user, allowing unauthenticated access to the specified resources.

•	 Cleanup (Optional). If specified, the attack cleans up by deleting the created ClusterRole and
ClusterRoleBinding to remove traces of the attack.

•	 Research Notes: This attack highlights the risks of granting broad access permissions to unauthenticated
users. By binding a ClusterRole with read-only permissions to the system:anonymous user, an attacker can
gain unauthorized visibility into the cluster’s operations and configurations. This can lead to information
leakage and provide the attacker with the necessary insights to plan further attacks. Mitigation strategies
include enforcing strict RBAC policies, restricting anonymous user permissions, and continuously monitoring
and auditing role bindings to detect and prevent unauthorized access. Strengthening RBAC configurations
and employing least privilege principles are essential steps to secure Kubernetes environments against such
privilege escalation attempts.

13

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Execution (TA0002)

Attempt To Stop Apt-Daily Upgrade

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Container Administration Command

•	 Type of Attack: An Attempt to Stop Apt-Daily Upgrade attack targets Kubernetes clusters by attempting
to stop the apt-daily.timer service on the host system. This timer triggers daily updates and upgrades of
packages on Debian-based systems. By stopping this service, an attacker could disrupt the regular update
process, potentially leaving the system vulnerable to unpatched security flaws and reducing the system’s
overall stability and reliability.

•	 Use Case Flow: The script exploits this misconfiguration by executing a command within a container to stop
the apt-daily.timer service on the host system. The steps are as follows:

•	 Loading the Kubernetes configuration using the kubernetes Python client.

•	 Executing a command inside a specified pod to stop the apt-daily.timer service using systemctl.

•	 Research Notes: This attack illustrates the potential risks associated with allowing containers to execute
commands on the host system. Disabling system maintenance tasks like apt-daily.timer can expose the
host to unpatched vulnerabilities, increasing the risk of exploitation. Researchers should focus on securing
the interaction between containers and the host system by restricting access to critical system files and
services. Implementing strict Pod Security Policies (PSPs) and minimizing the use of privileged containers are
essential steps to mitigate such risks. This attack underscores the importance of maintaining system update
mechanisms and ensuring that containers cannot interfere with critical host system operations.

Create Docker In Docker (DinD) - Pod

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Detected Not Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Container Administration Command

•	 Type of Attack: A Create Docker In Docker (DinD) - Pod attack targets Kubernetes clusters by deploying
a privileged pod that runs Docker inside a container. This misconfiguration can allow an attacker to gain
significant control over the underlying node by leveraging Docker commands to manage images and
containers within the pod. Such an attack can lead to unauthorized access to sensitive data, execution of
arbitrary commands, and potentially full control over the node.

14

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

•	 Use Case Flow: The script exploits this misconfiguration by creating a DinD pod and executing Docker
commands within it. The steps are as follows:

•	 Loading the Kubernetes configuration using the kubernetes Python client.

•	 Creating a new pod in the default namespace with a privileged container running Docker.

•	 Waiting for the pod to reach the “Running” state.

•	 Executing a series of commands inside the container to create a Dockerfile, build a Docker image, and
optionally clean up by removing the image and deleting the pod.

•	 Research Notes: This attack illustrates the potential risks associated with allowing containers to execute
commands on the host system. Disabling system maintenance tasks like apt-daily.timer can expose the
host to unpatched vulnerabilities, increasing the risk of exploitation. Researchers should focus on securing
the interaction between containers and the host system by restricting access to critical system files and
services. Implementing strict Pod Security Policies (PSPs) and minimizing the use of privileged containers are
essential steps to mitigate such risks. This attack underscores the importance of maintaining system update
mechanisms and ensuring that containers cannot interfere with critical host system operations.

Execute Command In Kube System

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Detected Not Detected

•	 Category: Privilege Escalation

•	 Attack Technique: Container Administration Command

•	 Type of Attack: The attack targets the ability to run arbitrary commands within the highly privileged kube-
system namespace. By creating and deploying a Pod in the kube-system namespace, an attacker can execute
commands within the container, potentially gaining control over critical system components. This can lead to
unauthorized access, data exfiltration, or disruption of Kubernetes operations.

•	 Use Case Flow:

•	 Initialization. The attack initializes by loading the Kubernetes configuration and creating an API client for
Core operations.

•	 Pod Creation. The attack creates a new Pod in the kube-system namespace using a specified container
image (e.g., busybox). The Pod runs a sleep command to keep it active.

•	 Wait for Pod to Run. The attack waits until the Pod reaches the Running state, ensuring it is fully
operational before executing further commands.

•	 Command Execution. Once the Pod is running, the attack executes a specified command (echo
‘Executing command inside the pod’) within the container using the Kubernetes API.

•	 Cleanup (Optional). If specified, the attack cleans up by deleting the created Pod from the kube-system
namespace to remove traces of the attack.

•	 Research Notes: This type of attack highlights the critical importance of securing the kube-system
namespace and monitoring for unauthorized Pod creation and command execution. The ability to run
commands in this namespace can lead to significant security breaches, as it often contains core components
of the Kubernetes cluster. Effective defenses should include strict access controls, regular audits of
namespace activities, and implementing policies to prevent unauthorized Pod deployments.

15

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Detected Suspicious Use Of The Nohup Command

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Misconfiguration Exploitation

•	 Attack Technique: Container Administration Command

•	 Type of Attack: By using the nohup command, an attacker can start a script that continues to run even after
the user has logged out, allowing them to maintain a foothold within the container and execute long-running
tasks without interruption. This attack targets the persistence and stealthiness of malicious activities within
containerized environments.

•	 Use Case Flow: The script connects to a specified Kubernetes pod and executes a command to create a
script, make it executable, and run it in the background using nohup. The process involves:

•	 Loading Kubernetes configuration to access the cluster.

•	 Creating an API client to interact with the Kubernetes API.

•	 Executing the command within the container to create a script file, modify its permissions, and run it
with nohup.

•	 Research Notes: This type of attack highlights the importance of monitoring and controlling background
processes within container environments. The use of nohup to run scripts can allow attackers to perform
continuous, undetected actions, complicating efforts to secure and audit containerized applications.
Researchers and security professionals should focus on detecting and mitigating such persistence
techniques, employing real-time monitoring and alerting systems to identify suspicious use of commands like
nohup. Understanding the potential for such attacks is crucial for enhancing the security and resilience of
containerized infrastructures.

Security-Related Process Termination Detected

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Process Manipulation

•	 Attack Technique: Container Administration Command

•	 Type of Attack: By killing processes that are critical for monitoring and auditing, such as auoms, an attacker
can evade detection and disable security mechanisms within the container. This attack targets the operational
integrity of security tools, potentially allowing unauthorized actions to go unnoticed.

•	 Use Case Flow: The script connects to a specified Kubernetes pod and executes a command to update
package lists, install necessary tools, and terminate a security-related process. The process involves:

•	 Loading Kubernetes configuration to access the cluster.

•	 Creating an API client to interact with the Kubernetes API.

•	 Executing the command within the container to update the package list, install procps (which includes
the pkill command), and terminate the auoms process with the pkill command.

16

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

•	 Research Notes: This type of attack highlights the importance of robust monitoring and alerting for the
termination of critical security processes within container environments. By terminating the auoms process,
the attacker disables a key component of the auditing infrastructure, thereby reducing visibility into their
activities. Researchers and security professionals should prioritize the detection of process manipulation
attempts and ensure that critical security processes are resilient to termination. Additionally, implementing
layered defense mechanisms and real-time alerts for process termination events can help mitigate the impact
of such attacks.

Digital Currency Mining Related Behavior Detected

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Resource Abuse

•	 Attack Technique: Container Administration Command

•	 Type of Attack: By installing and running a mining application, an attacker can hijack the container’s
resources to mine digital currency, which can lead to significant resource consumption and degrade the
performance of the affected container and potentially the entire cluster. This attack targets the computational
resources of the Kubernetes environment, potentially causing financial and operational impacts.

•	 Use Case Flow: The script connects to a specified Kubernetes pod and executes commands to install
necessary software and initiate cryptocurrency mining. The process involves:

•	 Loading Kubernetes configuration to access the cluster.

•	 Creating an API client to interact with the Kubernetes API.

•	 Executing the command within the container to update the package list, install GCC (a compiler), and
initiate mining by connecting to a mining pool with specified credentials.

•	 Research Notes: This type of attack highlights the importance of monitoring and securing resource usage
within Kubernetes environments. The unauthorized use of container resources for cryptocurrency mining
can lead to increased operational costs and degraded performance of legitimate applications. Researchers
and security professionals should focus on implementing resource limits, monitoring for unusual resource
usage, and employing security policies to prevent the installation and execution of unauthorized software.
Understanding the potential for such attacks is crucial for maintaining the performance and security of
Kubernetes clusters.

Detected Suspicious File Download

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Malicious File Download

•	 Attack Technique: Container Administration Command

•	 Type of Attack: By using tools like curl to fetch and download files from untrusted sources, an attacker
can introduce malware into the container environment. This attack targets the security and integrity of the
container by adding executable malware that can perform unauthorized actions.

17

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

•	 Use Case Flow: The script connects to a specified Kubernetes pod and executes commands to install
necessary tools and download a suspicious file. The process involves:

•	 Loading Kubernetes configuration to access the cluster.

•	 Creating an API client to interact with the Kubernetes API.

•	 Executing the command within the container to update the package list, install curl, and download a file
from a specified URL.

•	 Research Notes: This type of attack highlights the critical need for robust security controls and monitoring of
network activities within container environments. The unauthorized download of files, especially executables,
poses a significant security risk as it can lead to the introduction of malware, data breaches, and further
exploitation. Researchers and security professionals should focus on implementing strict network policies,
monitoring file download activities, and employing intrusion detection systems to prevent and detect such
activities. Understanding the potential for such attacks is essential for safeguarding Kubernetes clusters
against malware and ensuring the integrity of containerized applications.

Create Container In Kube-System Namespace

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Display Container

•	 Type of Attack: A Create Container in Kube-System Namespace attack targets the highly privileged kube-
system namespace within a Kubernetes cluster. By creating a container in this namespace, an attacker can
leverage elevated privileges to perform unauthorized actions, potentially compromising the entire cluster. This
type of misconfiguration can allow attackers to disrupt system operations, exfiltrate sensitive data, or gain
control over critical components.

•	 Use Case Flow: The script exploits the misconfiguration by creating a new pod within the kube-system
namespace and executing commands inside the container. The steps are as follows:

•	 Loading the Kubernetes configuration using the kubernetes Python client.

•	 Creating a new pod in the kube-system namespace with a specified container image (busybox).

•	 Waiting for the pod to reach the “Running” state.

•	 Executing a command (/bin/sh -c “echo ‘Executing command inside the pod’”) inside the container.

•	 Optionally cleaning up by deleting the created pod.

 The script provides detailed logging for each step, including the creation and execution phases.

•	 Research Notes: This attack emphasizes the critical importance of securing the kube-system namespace.
Creating a pod in this privileged namespace can give an attacker substantial control over the cluster, as this
namespace often contains system-level components and controllers. Researchers should prioritize securing
access to the kube-system namespace by implementing strict Role-Based Access Control (RBAC) policies
and regularly auditing namespace configurations. This attack demonstrates the potential consequences of
misconfigurations and highlights the need for robust security practices to protect against unauthorized access
and privilege escalation within Kubernetes environments.

18

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Host IPC Privilege

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Detected Detected

•	 Category: Find Misconfiguration and Exploit

•	 Attack Technique: Inter-Process Communication

•	 Type of Attack: A Host IPC Privilege attack on a Kubernetes container takes place when the container
is configured to share the host’s Inter-Process Communication (IPC) namespace. This setting grants the
container the ability to communicate directly with processes running on the host system, introducing a
significant security vulnerability. An attacker who gains access to such a container could potentially tamper
with or eavesdrop on IPC communications of the host, compromising system integrity and security. The
potential impact could range from unauthorized data access to more extensive system-level manipulations.

•	 Use Case Flow: The script scans all or specified Kubernetes namespaces to identify pods where host IPC is
enabled. After identifying these vulnerable pods, it moves to the exploit phase. During exploitation, for each
identified vulnerable pod, it creates a new pod in the same node, writes a file to shared memory (/dev/shm),
and checks if the same file can be accessed from the vulnerable pod.

•	 Research Notes: Misconfiguration alerts and alerts regarding writing file to shared memory would be
expected. While no misconfiguration alert was seen in any of the systems, an attack alert in 1 of the 3 tested
systems was found.

Host PID Privilege

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Detected Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Inter-Process Communication

•	 Type of Attack: A Host PID Privilege attack on a Kubernetes container occurs when a container is configured
to share the host’s process ID namespace. This grants the container visibility into all the host’s processes,
posing a significant security risk. An attacker who gains access to such a container can potentially monitor or
manipulate host processes, thereby affecting the integrity and security of the entire system. The impact could
range from unauthorized data access to complete control over the host machine.

•	 Use Case Flow: The script scans a Kubernetes cluster to identify Pods with host PID set to true, indicating
these potential security risks. It then validates whether these Pods can access specific host processes, such
as the kubelet. Results of the scan and exploit phases are logged for review.

•	 Research Notes: The expected outcome would be an alert about both misconfiguration and active command
invocation.

19

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Insecure Capabilities

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Not Detected Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Inter-Process Communication

•	 Type of Attack: An Insecure Capabilities attack involves assigning elevated capabilities to a container within a
Kubernetes pod. Capabilities such as SYS_ADMIN grant the container extensive privileges, potentially allowing
an attacker to perform unauthorized actions that could compromise the host system or other containers. This
misconfiguration can lead to severe security risks, including privilege escalation and system compromise.

•	 Use Case Flow:

•	 Loading the Kubernetes configuration using the kubernetes Python client.

•	 Creating a new pod in the default namespace with a container that has the SYS_ADMIN capability.

•	 Waiting for the pod to reach the “Running” state.

•	 Optionally cleaning up by deleting the created pod.

•	 The specific capability assigned is SYS_ADMIN, which provides extensive administrative privileges on
the host system.

•	 Research Notes: This attack underscores the dangers of assigning insecure capabilities to containers.
Elevated capabilities can grant a container excessive control over the host system, leading to potential
security breaches. Researchers should focus on enforcing the principle of least privilege by restricting
capabilities granted to containers. Implementing strict Pod Security Policies (PSPs), regularly auditing
container configurations, and ensuring that only necessary capabilities are assigned are essential steps to
mitigate such risks. This attack highlights the importance of securing container configurations to prevent
unauthorized access and privilege escalation within Kubernetes clusters.

20

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Persistence (TA0003)

Detected Suspicious Use Of The Useradd Command

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Privilege Escalation

•	 Attack Technique: Create Account

•	 Type of Attack: By adding a new user with a user ID of 0, which is typically reserved for the root user, an
attacker can gain elevated privileges within the container, allowing them to execute any command with root-
level access. This attack targets the integrity and security of container operations, leading to potential full
system compromise.

•	 Use Case Flow: The script connects to a specified Kubernetes pod and executes a command to add a new
user with root privileges. The process involves:

•	 Loading Kubernetes configuration to access the cluster.

•	 Creating an API client to interact with the Kubernetes API.

•	 Executing the command within the container to add a new user with a user ID of 0.

•	 Research Notes: This type of attack underscores the critical need for stringent security controls and
monitoring of user management within container environments. The ability to add users with root privileges
poses a significant security risk, as it can lead to unauthorized access and control over the container.
Researchers and security professionals should focus on enforcing least privilege principles, monitoring
suspicious user management activities, and implementing strong authentication and authorization
mechanisms. Understanding the potential for such attacks is essential for improving the security posture of
containerized applications and preventing privilege escalation.

21

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Privilege Escalation (TA0004)

Anomalous Behavior, Role Binding Created

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Detected Not Detected

•	 Category: Privilege Escalation

•	 Attack Technique: Abuse Elevation Control Mechanism

•	 Type of Attack: The attack involves creating a ClusterRole with read-only permissions and binding it to
the system:anonymous user. This can allow unauthenticated users to access sensitive cluster information,
facilitating further attacks or reconnaissance activities. The consequences include unauthorized data access,
potential information leakage, and an increased risk of subsequent attacks.

•	 Use Case Flow:

•	 Initialization. The attack initializes by loading the Kubernetes configuration and creating an API client for
RBAC operations.

•	 ClusterRole Creation. The attack creates a read-only ClusterRole with permissions to get, list, and
watch various resources such as pods, services, deployments, jobs, and more.

•	 ClusterRoleBinding Creation. The attack binds the newly created ClusterRole to the system:anonymous
user, allowing unauthenticated access to the specified resources.

•	 Cleanup (Optional). If specified, the attack cleans up by deleting the created ClusterRole and
ClusterRoleBinding to remove traces of the attack.

•	 Research Notes: This attack demonstrates the dangers of creating and binding a ClusterRole to the
system:anonymous user, allowing unauthorized and unauthenticated access to cluster resources. By
assigning read-only permissions across various resource types (pods, services, deployments, jobs,
etc.), an attacker can gain valuable insights into the cluster’s configuration and operations. This type of
misconfiguration can lead to information leakage and reconnaissance activities, potentially setting the
stage for more severe attacks. To mitigate such risks, it is crucial to implement strict RBAC policies, limit the
permissions of anonymous users, and continuously audit role bindings to detect and prevent unauthorized
access.

New High Privileges Role Detected

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Abuse Elevation Control Mechanism

•	 Type of Attack: A High Privileges Role attack on a Kubernetes cluster involves creating and binding
a ClusterRole with extensive permissions to a ServiceAccount. By exploiting this misconfiguration, an
attacker can gain elevated privileges, potentially allowing them to perform any action within the cluster. The
consequences of this attack could include unauthorized access to sensitive data, disruption of services, or
even full control over the Kubernetes environment.

22

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

•	 Use Case Flow:

•	 Initialization. The attack initializes by loading the Kubernetes configuration and creating API clients for
RBAC and Core operations.

•	 ClusterRole Creation. The attack creates a ClusterRole with broad permissions (apiGroups: [“*”],
resources: [“*”], verbs: [“*”]), allowing any action on any resource.

•	 ServiceAccount Creation. A new ServiceAccount is created in the default namespace.

•	 ClusterRoleBinding Creation. The attack binds the newly created ClusterRole to the ServiceAccount,
effectively granting it the high-level permissions defined in the ClusterRole.

•	 Cleanup (Optional). If specified, the attack cleans up by deleting the created ClusterRole,
ServiceAccount, and ClusterRoleBinding to remove traces of the attack.

•	 Research Notes: This attack underscores the risks associated with improperly configured role-based access
control (RBAC) settings within a Kubernetes cluster. By creating a ClusterRole with extensive permissions and
binding it to a ServiceAccount, an attacker can escalate privileges and gain broad access to cluster resources.
This vulnerability highlights the need for rigorous RBAC policies, continuous monitoring, and auditing of role
bindings to ensure that high-privilege roles are only assigned where absolutely necessary. Implementing least
privilege principles and regularly reviewing RBAC configurations can significantly mitigate the risk of such
attacks.

Create Linux Namespace

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Escape to Host

•	 Type of Attack: A Kubernetes Create Linux Namespace attack leverages the ability to create a new
namespace within the Linux environment of a Kubernetes container. By exploiting this capability, an attacker
can isolate a set of processes from the rest of the system, potentially bypassing security controls and gaining
unauthorized access to system resources. This misconfiguration can lead to a situation where the attacker
can perform privileged operations that should be restricted.

•	 Use Case Flow: The script targets a Kubernetes cluster, aiming to create a new Linux namespace within a
container. It does so by executing the unshare command, which isolates the container’s processes from the
rest of the system. The process involves:

•	 Loading the Kubernetes configuration using the kubernetes Python client.

•	 Connecting to the specified pod, namespace, and container.

•	 Executing the command unshare --mount /bin/bash to create a new mount namespace and start a new
shell session within the container.

•	 Research Notes: This attack highlights a significant misconfiguration risk in Kubernetes environments. By
creating a new namespace, attackers can effectively segregate their activities, making it harder to detect
and respond to malicious actions. The ability to execute privileged operations within an isolated namespace
can lead to various security breaches. Researchers should focus on identifying and mitigating such
misconfigurations by enforcing strict namespace policies and monitoring for unusual namespace creation
activities. This underscores the importance of proper configuration management and continuous monitoring
to ensure the security and integrity of Kubernetes deployments.

23

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Create Privileged Container

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Detected

•	 Category: Find Misconfiguration & Exploit

•	 Attack Technique: Escape to Host

•	 Type of Attack: A privileged container is a container that inherits the full range of capabilities from the host
machine. Practically speaking, this enables the privileged container to execute nearly any operation that could
be done directly on the host system.

•	 Use Case Flow: The script initiates by scanning a Kubernetes cluster for containers running with privileged
settings. It gathers details from either all namespaces or a specific list, storing the results. The script then
proceeds to exploit these privileged containers. It performs various actions like mounting devices and creating
files in the host file system to demonstrate the exploit.

•	 Research Notes: The expected outcome would be an alert about both misconfiguration and active command
invocation

Host Path Mount

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Detected Detected

•	 Category: Find Misconfiguration & Exploit

•	 Attack Technique: Escape to Host

•	 Type of Attack: A Host Path Mount attack on a Kubernetes container occurs when the container is improperly
configured to mount directories or files from the host system. This configuration exposes the container to
elevated risks, as it gains direct access to crucial parts of the host file system. An attacker who gains control
of such a container could potentially read, modify, or delete sensitive data on the host, affecting system
integrity and security. The consequences could range from data loss and unauthorized data access to full
system compromise.

•	 Use Case Flow: The script scans a Kubernetes cluster for Pods that use hostPath volume mounts. It leverages
the Kubernetes API to get Pods, then iterates through their containers to look for hostPath volume mounts.
Containers with hostPath mounts are considered vulnerable. During the exploit phase, the script further
validates the volume mounts in the containers of the flagged Pods by using the Kubernetes API client and
a stream object to execute the command, returning the response, followed by an execution of a specified
command in a specified container within a specified pod.

•	 Research Notes: The expected outcome would be an alert about both misconfiguration and active command
invocation. In testing, expected alerts regarding misconfigurations only occurred in 1 of the 3 tested solutions,
with alerting about command invocation in none.

24

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Writeable Host Path Mount

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Detected Detected

•	 Category: Find Misconfiguration & Exploit

•	 Attack Technique: Escape to Host

•	 Type of Attack: A Writable Host Path Mount attack targets containerized environments by exploiting the ability
to mount host system directories (paths) into a container with write permissions. In a successful attack, the
attacker could manipulate or replace files on the host machine from within the container.

•	 Use Case Flow: Scripting first initializes logging and scans a Kubernetes cluster to identify containers with
writable host path mounts. It gathers pod and container details from specific namespaces or all detected
namespaces. After the scan, it validates each potentially vulnerable container by executing specific
commands to confirm the writability of discovered mounts. Summaries of both the scanning and validation
results are printed to the console.

•	 Research Notes: The expected outcome would be an alert about both misconfiguration and active command
invocation. In testing, expected alerts regarding misconfigurations only occurred in 1 of the 3 tested solutions,
with alerting about command invocation in none.

Role Binding To The Cluster-Admin Role Detected

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Detected

•	 Category: Privilege Escalation

•	 Attack Technique: Exploitation for Privilege Escalation

•	 Type of Attack: Role Binding to the cluster-admin Role attack on a Kubernetes cluster involves exploiting a
misconfiguration to bind a user or service account to the highly privileged cluster-admin role. By creating
such role bindings, an attacker can gain elevated privileges, allowing them to perform administrative actions
across the entire cluster. This attack targets the access control mechanisms within Kubernetes, leading to
potential full control over cluster resources and operations.

•	 Use Case Flow: The script connects to a Kubernetes cluster, creates a RoleBinding and a ClusterRoleBinding
to the cluster-admin role, and optionally cleans up the created bindings. The process involves:

•	 Loading Kubernetes configuration to access the cluster.

•	 Creating an API client to interact with the Kubernetes API.

•	 Creating a RoleBinding in a specified namespace to bind a user to the cluster-admin role.

•	 Creating a ClusterRoleBinding to bind a user to the cluster-admin role across the entire cluster.

•	 Optionally deleting the created bindings to clean up the environment.

25

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

•	 Research Notes: This type of attack emphasizes the importance of strict access control and monitoring
within Kubernetes environments. By binding a user to the cluster-admin role, an attacker can gain unrestricted
access to the cluster, posing a significant security risk. Researchers and security professionals should
focus on enforcing the principle of least privilege, regularly auditing role bindings and cluster role bindings,
and implementing real-time monitoring to detect and respond to suspicious privilege escalation attempts.
Understanding the potential for such attacks is crucial for maintaining the security and integrity of Kubernetes
clusters.

Admin Access To Default Service Account

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Detected Not Detected

•	 Category: Privilege Escalation

•	 Attack Technique: Valid Accounts

•	 Type of Attack: The attack involves creating a ClusterRoleBinding that grants the cluster-admin role to the
default ServiceAccount in the default namespace. This grants administrative privileges to any pod running
with the default ServiceAccount, potentially allowing an attacker to take full control over the Kubernetes
cluster. The consequences include unauthorized access, privilege escalation, and potential compromise of
the entire cluster.

•	 Use Case Flow:

•	 Initialization. The attack initializes by loading the Kubernetes configuration and creating API clients for
RBAC and Core operations.

•	 ServiceAccount Creation. The attack creates a new ServiceAccount in the default namespace.

•	 ClusterRoleBinding Creation. The attack binds the cluster-admin role to the default ServiceAccount,
granting it administrative privileges across the cluster.

•	 Research Notes: This attack demonstrates the dangers of misconfiguring role-based access control (RBAC)
settings in Kubernetes. By binding the cluster-admin role to the default ServiceAccount, an attacker can
easily escalate privileges and gain control over the entire cluster. Mitigation strategies include strict RBAC
policies, limiting the permissions of default ServiceAccounts, and continuously auditing role bindings to detect
and prevent unauthorized access. Implementing least privilege principles and regularly reviewing RBAC
configurations are essential steps to secure Kubernetes environments against privilege escalation attempts.

26

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Defense Evasion (TA0005)

A History File Has Been Cleared

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Misconfiguration Exploitation

•	 Attack Technique: Indicator Removal (Clear Command History)

•	 Type of Attack: By manipulating the .bash_history file within a container, an attacker can clear the command
history, making it difficult for administrators to track and investigate suspicious activities. This attack targets
the auditability and transparency of container operations, potentially allowing unauthorized actions to go
unnoticed.

•	 Use Case Flow: The script connects to a specified Kubernetes pod and executes a command to create and
then remove the .bash_history file, effectively erasing any recorded commands. The process involves:

•	 Loading Kubernetes configuration to access the cluster.

•	 Creating an API client to interact with the Kubernetes API.

•	 Executing the command within the container to manipulate the .bash_history file.

•	 Research Notes: This type of attack emphasizes the critical need for robust auditing and monitoring
mechanisms within container environments. By erasing the .bash_history file, the attacker ensures that their
activities remain hidden, complicating forensic investigations. Researchers should focus on developing and
implementing enhanced logging mechanisms and real-time monitoring solutions that can detect and alert
on suspicious behavior, even in the absence of traditional log entries. Understanding the potential for such
attacks is essential for improving the security posture of containerized applications and preventing similar
threats.

Kubernetes Events Deleted

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Misconfiguration Exploitation

•	 Attack Technique: Indicator Removal (Clear Command History)

•	 Type of Attack: By deleting these events, an attacker can remove evidence of their actions, making it
difficult for administrators to detect and investigate suspicious activities. This attack targets the visibility
and traceability of operations within the Kubernetes cluster, potentially allowing unauthorized actions to go
unnoticed.

•	 Use Case Flow: The script connects to a Kubernetes cluster, creates a dummy event, and then deletes it. The
process involves:

•	 Loading Kubernetes configuration to access the cluster.

•	 Creating an API client to interact with the Kubernetes API.

27

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

•	 Creating a dummy event in a specified namespace to simulate a legitimate event.

•	 Deleting the created event to demonstrate the ability to remove Kubernetes events.

•	 Research Notes: This type of attack underscores the importance of robust logging and monitoring
mechanisms within Kubernetes environments. By deleting events, the attacker ensures that their activities
remain hidden, complicating forensic investigations and incident response. Researchers and security
professionals should focus on implementing immutable logging mechanisms, setting up alerts for event
deletions, and regularly auditing event logs to detect suspicious behavior. Understanding the potential
for such attacks is crucial for enhancing the security posture of Kubernetes clusters and preventing the
manipulation or deletion of critical audit data.

28

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Credential Access (TA0006)

Application Credentials In Configuration Files

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Not Detected Not Detected

•	 Category: Information Disclosure

•	 Attack Technique: Steal Application Access Token

•	 Type of Attack: The attack targets the exposure of sensitive information, such as credentials, tokens,
and passwords, stored in environment variables of Kubernetes Pods. By scanning and exploiting these
misconfigurations, an attacker can gain unauthorized access to applications and services within the cluster.
The consequences include potential data breaches, unauthorized access to resources, and further escalation
of privileges.

•	 Use Case Flow:

•	 Initialization. The attack initializes by loading the Kubernetes configuration.

•	 Scanning for Sensitive Information. The Scanner class scans all or specified namespaces for Pods with
environment variables containing sensitive keys (e.g., “credential”, “bearer”, “token”). If any such Pods
are found, their names and namespaces are logged.

•	 Exploitation. The Exploit attempts to execute a command (env) within the containers of the identified
Pods to extract the environment variables. The attack logs any discovered sensitive information from
these environment variables.

•	 Research Notes: This attack underscores the risks of storing sensitive information in environment variables
within Kubernetes Pods. Such misconfigurations can be easily exploited to reveal critical credentials and
tokens, leading to unauthorized access and potential breaches. Mitigation strategies include using Kubernetes
Secrets for storing sensitive data, ensuring environment variables do not contain confidential information, and
regularly auditing configurations for compliance.

Access To Kubelet Kubeconfig File

Azure Cloud Defender AWS GuardDuty GCP Command Center

Detected Not Detected Not Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Unsecured Credentials

•	 Type of Attack: An Access to Kubelet Kubeconfig File attack targets Kubernetes clusters by accessing the
Kubelet configuration file (kubeconfig). This file contains sensitive information, including credentials and
configuration details, which can be exploited to gain unauthorized control over the Kubelet and potentially the
entire cluster. This misconfiguration can lead to significant security breaches, allowing attackers to manage
nodes, deploy workloads, and access sensitive data.

29

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

•	 Use Case Flow: The script exploits this misconfiguration by accessing and reading the Kubelet kubeconfig file
from within a container. The steps are as follows:

•	 Loading the Kubernetes configuration using the kubernetes Python client.

•	 Executing a command inside a specified pod to read the contents of the kubeconfig file located at /
host/var/lib/kubelet/kubeconfig.

•	 Research Notes: This attack highlights the critical importance of securing configuration files within
Kubernetes clusters. Access to the Kubelet kubeconfig file can provide an attacker with the credentials and
configuration details necessary to control Kubelet operations, which can lead to full cluster compromise.
Researchers should prioritize securing access to the host file system, implementing strict file permissions, and
ensuring that sensitive files are not exposed to containers. Regularly auditing Kubernetes node configurations
and applying security best practices are essential to mitigate such risks. This attack underscores the
necessity of protecting sensitive information within Kubernetes environments to prevent unauthorized access
and potential privilege escalation.

List Secrets

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Not Detected Not Detected

•	 Category: Access Sensitive Data

•	 Attack Technique: Unsecured Credentials

•	 Type of Attack: A List Secrets attack on a Kubernetes container involves exploiting improperly configured
access controls to list or retrieve sensitive information stored as secrets within the Kubernetes cluster. When
permissions are too lax, an attacker gaining access to a container or service account can enumerate these
secrets, which may include database credentials, API keys, or other sensitive data. The attacker could then
use these secrets to compromise applications or gain unauthorized access to resources. The impact could
range from data breaches to full system takeovers.

•	 Use Case Flow: The script scans a Kubernetes cluster to identify users with permissions to read secrets
by examining role-based access control settings. It logs users who have permissions to either ‘get’, ‘list’, or
‘watch’ secrets. In the exploit phase, the script attempts to list secrets using the service account tokens of the
flagged users.

•	 Research Notes: Log entries identifying attempts to obtain sensitive information, such as secrets, were
witnessed for other cloud services; but were not present for Kubernetes-specific attempts performed.

30

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

Discovery (TA0007)

Successful Anonymous Access

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Detected Not Detected

•	 Category: Unauthorized Access

•	 Attack Technique: Cloud Service Discovery

•	 Type of Attack: The attack involves accessing the Kubernetes API server without authentication, allowing
the attacker to retrieve information about the cluster’s resources. This attack can expose sensitive data and
provide insights into the cluster’s configuration, potentially leading to further exploitation. The impact includes
unauthorized data access, potential information leakage, and an increased risk of subsequent attacks.

•	 Use Case Flow:

•	 Initialization: The script initializes by setting up a base URL for the Kubernetes API server.

•	 Curl Command Execution: The script executes a curl command to access the API endpoint for listing
pods in the default namespace. The command is run without any authentication, leveraging the
assumption that anonymous access is permitted.

•	 Result Handling: The output of the curl command is displayed, showing the retrieved information from
the API server.

•	 Research Notes: This attack highlights the critical need to secure the Kubernetes API server against
unauthenticated access. Allowing anonymous access to the API can expose sensitive information about
the cluster’s resources, configurations, and operations. To mitigate this risk, it is essential to enforce strong
authentication mechanisms, restrict anonymous access, and continuously monitor API access logs for
suspicious activity. Ensuring that the Kubernetes API server is not exposed to unauthenticated users is a
fundamental security measure to protect the integrity and confidentiality of the cluster.

Anonymous Access To Kubelet Service

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Not Detected Not Detected

•	 Category: Find Misconfiguration & Exploit

•	 Attack Technique: Container & Resource Discovery

•	 Type of Attack: An Anonymous Access to the Kubelet Service attack occurs when the Kubelet service
running on Kubernetes nodes is misconfigured to allow anonymous access. This exposes a critical
component of the cluster to unauthorized users, who could retrieve sensitive data, manipulate running
containers, or execute malicious actions. The impact of such an attack could range from unauthorized data
disclosure to potential control over the node or even the entire cluster.

31

Cymulate Threat Research Group

Native Cloud Defenses vs Kubernetes Attacks

•	 Use Case Flow: The script scans Kubernetes nodes to identify those that are misconfigured to allow
anonymous access to the Kubelet service. During scanning, it deploys temporary pods on each node
to gather information. If vulnerabilities are found, during the exploit phase the script takes advantage of
anonymous access by creating a ClusterRoleBinding for anonymous users with admin rights. It then sends an
HTTP request to validate the exploit.

•	 Research Notes: A log of the deployment of the pod (which exists in native Kubernetes), as well as attempts
to access information and to provide roles to anonymous users are expected. One cloud provider logged
pod creation; however, it was impossible to link it to our action, based on the provided information. All cloud
providers did log activity when providing roles, though these log entries did not align with the timeframe of the
attack protocol. This can lead to inaccurate forensics and the potential for not finding the correct root-cause
of an attack. Logs are also expected for attempts to execute the exploit components of the script but were not
found in any of the platforms used.

Host Network Access

Azure Cloud Defender AWS GuardDuty GCP Command Center

Not Detected Detected Not Detected

•	 Category: Find Misconfiguration

•	 Attack Technique: Network Service Discovery

•	 Type of Attack: A Host Network Access attack on a Kubernetes container occurs when the container is
improperly configured to access the host’s network namespace. This gives the container direct visibility into
network traffic and resources on the host system, creating a significant security risk. An attacker gaining
control of such a container could potentially eavesdrop on, intercept, or manipulate network communications,
affecting both the host and other containers on the network. The impact could range from unauthorized data
access to disruption of network services or even full system compromise.

•	 Use Case Flow: The script scans a Kubernetes cluster to identify pods that have host networking enabled. In
the exploit phase, it checks if the pods with host networking enabled actually share the same IP address with
their nodes, implying they are directly connected to the node’s network.

•	 Research Notes: Logging and alerting to the misconfiguration were expected, but not found. In this specific
technique, there would not be logging of the exploitation, making logging of the misconfiguration significantly
more critical for defense.

	Kubernetes Report.pdf
	Kubernetes report - appendix.pdf

